Non Homomorphic Reductions of Data Structures

Luis Antonio Galdn, Manuel Ninez, Cristébal Pareja, Ricardo Pena

e-mail: {lagalan,manuelnu,cpareja,ricardo}@dia.ucm.es

Departamento de Informatica y Automatica
Universidad Complutense de Madrid
fax: (34-1) 394 4607 ph: (34-1) 394 4429
FE-28040 Madrid. Spain

Abstract

In this paper we study different kinds of reductions of data types. By re-
duction we mean applying the higher order function fold to a data structure.
An appropriate fold function can be defined for any recursive data type. These
reductions have been presented as homomorphisms by several authors [2, 6].
Although many useful functions on data structures can be programmed as in-
stances of fold, there are some that cannot. This is due to the fact that they
are not mathematical homomorphisms. We show some examples of these func-
tions. Then, we introduce two generalizations of fold (one for lists and the other
for binary trees) in terms of which many non homomorphic mappings can be
defined. Some examples are presented.

A second problem addressed in the paper is the relationship between the
definitions of some particular reductions in different data types. We show that
the definition of a particular reduction, e.g. to insert an element in a data
structure, in terms of fold (either the generalized version or the usual one),
looks the same for different data structures. In many cases, one can be obtained
by transforming the other. We define a hierarchy of data types according to
the amount of “structural” information they possess. It is shown how some
reductions of a data structure A with more structural information than another
one B can be obtained by composing the homomorphism from A to B that
“forgets” structural information, with the homomorphism reducing B.

1 Introduction

There are two ideas that have been frequently stressed in transformational functional
programming: the use of object-free functions [1] and the definition of a small set
of higher order functions (map, map2, foldr, filter, etc.) that can cope with a large
number of situations (e.g. the Bird-Merteens formalism [2]). Modern functional
languages such as SML, Miranda, Haskell and Gofer [8, 7, 4, 5] are examples of this.
The advantage of using these functions is twofold: in one hand, they encapsulate well

www.manaraa.com

known recursion patterns, avoiding the use of explicit recursion in situations matching
these patterns. In the other hand, they satisfy a number of algebraic laws allowing
the transformation of programs in a secure manner, from inefficient clear formulations
to more-efficient, less-clear ones [2, 3].

Among these patterns, the function fold deserves special mention. The intuition
behind it is to reduce a polymorphic data structure of type T « into a value of type
B. In particular, may coincide with T «. Many functions getting information from
a data structure or modifying it (in the sense of producing a modified copy of it), can
be programmed as instances of fold. In fact, other higher order functions such as map
and filter can be defined in terms of fold. In [6] the fold function is characterized as a
homomorphism. However, not every function f : T' «—f is a homomorphism. We
present some examples of non homomorphic funtions on lists and trees.

Looking for a common pattern for these non homomorphic functions, we propose
a modified version of fold for lists, named nhl in the paper, and another for binary
trees, named nht, allowing to express some common non homomorphic accesses to
these structures. Also some homomorphic functions very complex to express as such,
can be defined in a simple way using these new reductions.

A second problem we address in the paper is the relationship between reductions
in different data types. We follow an approach that considers a data structure as
formed by two components: the data elements and the “structure” itself. We define
a hierarchy of data types according to the quantity of “structural” information they
possess. We show that some reductions of data structures with more structural in-
formation can be expressed as the composition of two homomorphisms: the one that
forgets all or part of the structural information, and the one that reduces the target
structure.

Prosecuting this idea, we compare the definition of some interesting reductions (in-
serting and deleting an element in a data structure) for different data structures. We
find out the definitions so similar, that all of them could be obtained by transforming
the reduction of the structure with no structural information (sets and multisets).

The organization of the paper is as follows: after this introduction, in section 2 we
review some of the work done in the last few years on homomorphisms. We present
some examples of homomorphisms over lists, sets, multisets and binary trees. In sec-
tion 3 we present some non homomorphic functions on lists and binary search trees,
and introduce our generalization of the fold function for these two structures. In
particular, it is shown how several variants of insertion and deletion can be easily ex-
pressed in terms of the new higher order functions. Section 4 is devoted to presenting
the hierarchy of data structures and the transformations between reductions of dif-
ferent data structures. Finally, section 5 provides a short conclusion and summarizes
the lines along which this work can be continued in the near future.

2 Homomorphic reductions

Homomorphisms [2, 3, 6] constitute a uniform way of expressing functions that
distribute (promote in words of R. Bird) their activity both to the data elements and to

www.manaraa.com

the constructors of a data structure. Since most of the interesting data structures have
recursive constructors, homomorphisms encapsulate a recursion scheme consisting of
applying to all the substructures the same function applied to the main structure.
This scheme is used by many functions working on the structure.

Definition 2.1 A function h defined on a data structure of elements of type «,
(denoted T «) is a homomorphism if there exist m reductor functions G, (1 < i < m),
one for every constructor K;, such that A is defined as:

h2Ta—p
h(Kiei...ep,) = DK€y ...€.
)€ Jife; ta
where ¢ = { hej ,ife; T«
We will use the notation h = H(®k, ... Pk,)- 0

2.1 Homomorphisms on lists

In most functional languages, lists are recursively defined in terms of two constructors:
the empty list, denoted [], and the Cons constructor denoted _: _ .

listr a =[] | (:) o (list, «)

We call these lists forward lists after [6] and, since they are reduced from right to
left, we denote them by list.. The homomorphisms over list, are then denotated
H(®.,®r7). When referring to any kind of lists we will use HL instead of H. The
symmetric definition (a constructor adding an element to the right of the list) leads
us to the corresponding backwards lists, denoted list; as they are reduced from left
to right. In FP [1] sequences encapsulate both types of lists and mechanisms for
accessing and modifying both ends of a list are provided by the language.

The most important higher order function on lists is the reduction. It is called
foldr (in Miranda and Haskell) for list,, and foldl for list;'. In general, the operator
(@) is not associative . When it is so, and using Bird notation, fold is denotated &/.
It is defined as follows:

Definition 2.2 Let (®) : @« = o — « be associative and with neutral element idgy.
We define:
[/uilaDa—a)o o] o a
@) [x1...2n] = 21D ... D2y,
@/ [] =idg
O

Bird considers lists as monoids (join-lists in [6]). The base cases are the empty
list and the unit list. The recursive case is the list constructed by appending two

1 Usually, foldl is defined in terms of the forward constructor (:). However, the reduction concep-
tually corresponds to a definition in terms of the backwards constructor.

www.manaraa.com

lists with the + operator which is associative and has the empty list as its neutral
element. We will denote them list,,.

listy, o =[] | [Jo | (#) (listypar) (listy o)

The main advantage of list,, is its generality: list, and [ist; are particular cases of it.
In contrast, they have the drawback of not having free constructors, so the following
laws must be settled amongst them:

Va,y,z € listy, (xHy)+Hz = cH(yH=2)
et (]= (e =2

Homomorphisms associated to list, must preserve the associativity of +. A
mapping h over list, is a homomorphism if there exists an associative function
@y : 8 — 3 — B and functions @) : @ — 3 and @[y : 8 such that

h(li4tlz) = (h 1) Sy (h 12)
h [l‘] = @[.] x
h[]=erp

The main law satisfied by these homomorphisms is the following:
h homomorphism over list,, < h = /. f*

where fx denotes the expression map f.

We will abbreviate after Bird H L(®y, @1, ®11) by B(D, f), and we will call these
homomorphisms B-homomorphisms, being & = @&y, f = @[] and id@* = 69[]2. It is
inmmediate to express any B-homomorphisms as an H L(®., 7).

A large number of functions over finite lists can be expressed as B-homomorphisms:

fx = B(,L1.f)
@/ == B(@, idoc)
pa = B(—H—,p—)[],[x[])
allp = B(/\,p)
some p = B(V,p)
length = B(+,K1)
reverse = B(—I:—, D
mergesort = B(merge,[.])
Z.d[oc] = B(‘H‘a [])

where K x y = x, merge merges two ordered lists, a —ﬁ— b=>b+H aand

f x, if px holds

g ©, otherwise

@%ﬁme{

It must be noted that B-homomorphisms are strictly less general than forward list
homomorphisms H L(®., @) as the following example shows.

2When id@_ﬂ_ doesn’t exist, the domain excludes the empty list.

www.manaraa.com

Example 2.1 We wish to compute the integer represented by a list of digits, each
one in the range 0..9, being the most significant digit the rightmost one.

integer = HL(®.,0)
where t@.s = s+ 10+ O

This function cannot be expressed as a B-homomorphism, because there is no way
(with a homomorphism) of recording the number of zeroes in the middle of the com-
putation.

2.2 Homomorphisms over other usual monoids

Homomorphisms can be easily generalized to other data structures. The main require-
ment for them is that the reductor operators must preserve the constructor laws.
Multisets are commutative monoids. Their algebraic definition is as follows:

mset « = { }| {.}o | (U) (mset o) (mset a)

where the binary constructor U satisfies the associative and commutative laws. As a
consequence, homomorphisms h over multisets must provide an associative, commu-
tative reductor @y and satisfy:

h(miUmgz) = (h m1)Bw (h m2)

For instance, the cardinal of a multiset, or the sum of all their elements are ho-
momorphisms. In both cases, @y is the 4+ operator over natural numbers.
Sets are commutative, idempotent monoids. Their algebraic definition is:

seta={}|{}a]| (V) (set @) (set a)

where the binary constructor U satisfies the associative, commutative and idempotent
laws. As a consequence, homomorphisms h over sets must provide an associative,
commutative, idempotent reductor @, and satisfy:

h(s1Usz) = (h s1)@u(h s2)

Functions computing the maximum element of a set, or the greatest common divi-
sor of all of them can be expressed as homomorphisms over sets. Also, the predicates
using all p, such as the section (C S) for a given S, defined as (C S) = all (€ 5), or
those using some p, such as the section (z €), defined as (# €) = some (z =), are
homomorphisms.

2.3 Homomorphisms over binary trees

In this section we introduce the algebraic definition of binary trees and their associated
homomorphisms:
Treea = A | o (Tree a) a (Tree a)

Then, homomorphisms over binary trees need the existence of two reductors.

www.manaraa.com

Definition 2.3 We say that a function h : Tree « — (3 is a homomorphism if there
exist reductor functions @4 : § > a = 3 — [and ®, : § such that:

ha = ©®a
hielazr) = @y (hl)x(hr)

We will use the notation h = HT (B, Ba) to denotate these homomorphisms. O
A number of homomorphic functions over lists have their homolog ones over trees:
fx = HT(®,, 1)
where @y lzr =l (f z)r

allp = HT(A, True)
where A b zb. = (px) Ab Ab,

somep = HT(\, False)

where \/ bz b. = (pz) Vb Vb,

size = HT(®s,0)

where ®, 1y x 1, =4 +1+1,
height = HT(®,,(—1))

where @, 1y x 1, = 1+ maz 7 1,
flatten = HT(4s3,[])

where +H3! o r=I+H[z]Hr
WdTree o = HT('? A)

3 Non homomorphic reductions

In this section, two higher order functions are defined —one for forward lists and
another one for binary trees— that generalize common non homomorphic functions
on these structures.

The underlying idea on these functions comes from realizing that many functions
on a structure, first search along the structure looking for some property to hold; then
some special treatment is done, and then the rest of the structure is ignored. In terms
of reduction, this idea can be interpreted as follows: the structure is divided into two
parts, the active one and the passive one with the aid of one or more predicates.
Reducing the active part amounts to say that the reductor operator does the search,
and if the search succeeds applies the special treatment. Reducing the passive part
consists of applying a different reductor operator, which in many cases simply copies
the structure.

We are specially interested in those operations that return a structure of the same
type as the original one, i.e. we pay attention to insertion and deletion operations.

3.1 Lists

We study ordered and unordered lists, with and without multiple copies of elements.
For ordered lists without repetitions both operations are homomorphisms. Their defi-
nitions follow.

www.manaraa.com

Example 3.1
insert x = B(&,f)
where {y = [x,y], if x<y

=[y] ,ify=x
(M+[x1]) & ([x2]412) = NH[x2]4H#12 , if xI=x
= I H[x1]412 , if x2=x

delete x = (x#) « i
We see that expressing insert as a homomorphism is little intuitive: we first insert a
copy of z either to the right or to the left of each element. Then we remove all the
copies except the one that must remain.
For unordered lists without repetitions both operations are also homomorphisms.
In fact, delete is the same function of example 3.1. The insert function is the following
homomorphism:

Example 3.2
insert x = B(&, f)
where fy = [x,y] , if x£y
=[y] ,otherwise
11 ¢ ([x2]+12) = 11412 m
Again, the technique consists of inserting a copy of & for every element in the list not
equal to z, and then removing all the copies except the leftmost one.

However, for lists with repetitions some operations are not homomorphisms. In-
sertion of a new copy indeed it is, and can be defined by slightly modifying the
otherwise clause of example 3.2. But to delete the leftmost copy of a value # is not
a homomorphism as the following lemma shows.

Lemma 3.1 The function that deletes the leftmost copy of a value x in an ordered
list with repetitions is not a homomorphism.

Proof. Let us assume that A implements that function an h is a homomorphism.
Then, there exists a reductor @ such that h (y:ys) = y B h ys.

Let xs be any list without occurrences of the value xz. Then, h xs = xs, and
h(z:xs) = xs. But h (z:2s8) = @ h xs, then # & s = xs. As a consequence, we
have h (z:w:2s8) = x B h (x:2xs) = ¢ @ xs = xs, in contradiction with what the
hypothesis says: that h only deletes one copy of x. D

For the case of unordered lists the proof is very similar, but it must be noted that
h xs needs not be equal to xs but to a permutation of the elements of xs.

Despite the fact that some of these functions are not homomorphisms or, if they
are, it is difficult to express them as such, it is possible to define a homomorphism,
named split, which does part of the work of insert and delete. What remains to be
done is simple enough to make the programming of these two functions an easy task.
The homomorphism split, defined below, applies a predicate ¢ to the list and splits it
into two lists in such a way that the first element of the second list (in the case the
list is not empty) is the leftmost element of the original list satisfying q. For example,

split (>5) [1,3,5,7,4]=[[1,3,5],[7,4]]-

www.manaraa.com

Definition 3.1
split q = B(&,f)
where f x = [[],[x]] , if q x
[[x],[]] , otherwise
[11,[]] ® [12,m2] = [11+12, m2]
[[1,m1] & [12,m2] = [I1,m1+HI2-Hm?2]

m]
Let us remark that the neutral element of operation @ in this case is [[],[]]. With
the aid of split, deletion of the leftmost copy of z can be programmed as:
delete x = del.(split (x=))
where del [I1 , x:12] = 11 H12
del [I1,[]] =11

Unfortunately, split is not a solution for all the problems concerning insertion and
deletion. For instance, the homomorphism that deletes all the copies of an element
is not easily constructed with split. Besides, it is not clear how to generalize split to
other data structures. So, we define a more general non homomorphic reduction for
lists based on the idea presented at the beginning of this section.

Definition 3.2 Non Homomorphic reduction function for Lists (nhl):

nhl q &, ®4 b []=Db
nhl q @, @4 b (x:x8) = x B4 (nhl q & B4 b xs)
where & = ®, , if - (q x)

= P4 , otherwise O

Reductor operators @, (active) and @4 (default or passive) correspond to the (:) con-
structor, and b corresponds to the [] constructor. We will use the following notation
which mimics that used for homomorphisms:

nhl ¢ &4 ®a b = NHL(¢,®¢,@¢,&p))

The function nhl “inserts” an active reductor after each element of the list including
the first, if any, satisfying the g predicate. From that point to the end of the list, nhl
inserts the passive reductor. The following expression pictures this idea:

nhl q @, ®a b [21, T2, ooy Tiy Tig1ye ey o1, Tp] =
21Pq (22Pa (- .. 2iBa(Tip1Pa(. . . 2no1Pa(r,Pab) . ..)

being ¢ = min{l...n} such that ¢ 2; holds.

Trivially, any homomorphism H L(®., @) on forward lists can be expressed as the
non homomorphic reduction NH L(q, ®¢, B¢, @r1) making ©&f = @d = @., and being
g any boolean function. Some awkward homomorphic functions can be elegantly
expressed as a non homomorphic reduction. For instance, inserting a value z in an
ordered list without repetitions is now:

Example 3.3
insert x = nhl (>x) & (:) []
where y @ ys = xtyiys , if x < y
=yx:[] ,ifys=[]Ax>y
= y:ys , otherwise

www.manaraa.com

We assume that the argument list is non empty. If it is empty, then insert « []= [«].
The other insertion functions can be similarly programmed. For deletion, the following
function is enough for all the cases presented in this section.

Example 3.4
delete x = nhl (=x) @& (:) []
wherey ®ys=ys ,ifx=y

= y:ys , otherwise O

Let us note in these examples that the passive reductor is (:) and the base case is [],
so they reconstruct (or copy) the original list.

3.2 Binary trees

For these structure, we only consider binary search trees without multiple occurrences
of elements. The treatment of multiple occurrences does not present special problems
in this structure.

The non homomorphic reduction we are proposing here encapsulates as a partic-
ular case the usual recursion scheme on binary search trees: the search propagates
either to the left or to the right subtree, never to both of them at the same time.

Definition 3.3 Non Homomorphic reduction function for Trees (nht):

nht gl qr &, &g b a =b
nht ql qr &, @ b (el zr) = B, (nht ql qr §; Dg b 1) x (nht gl qr &, Bg b 1)
where &) = @, , if = (ql x)
= @, , otherwise
®r = Bg, if 2(qr x)

= @y, otherwise
D

Predicates ¢/ and ¢r trigger the change from active to passive mode in the corre-
sponding subtrees, the first time they hold. The active part of the tree extends from
the root to the nearest elements satisfying ¢/ or gr. The figure 1 shows an example
of execution.

Reductor operators @, and ¢, correspond to the e constructor, and the base case
b corresponds to the A constructor. We will use then the following notation:

nht ¢l gr ©, Bg b =
NHT(ql,qr,@f,@ﬁl,@A)

Like in the case of lists, we could express the insertion and deletion as homomor-
phisms. Unfortunately, the resulting functions are not so easy to understand. By
using the non homomorphic reduction, we see below that the result is very simple.

Example 3.5
insert x = nht (<x) (>x) @ & &
where @ lyr=ely (e axa),ifr=a A x>y
=—e(eanxa)yr,ifl=a A x<y
—elyr , otherwise

www.manaraa.com

Da T2 Da T4
. A /
SoF SoF
Ba Da

Figure 1: An example of nht execution.

D
Example 3.6
delete x = nht (<x) (>x) ® & &
where ®lyr =elyr ifx#y
bayr =t
@®lyr = e (delmax]l) (selmax])r O

The functions delmar and selmax, respectively deletes and selects the maximum ele-
ment of a tree and could also be expressed as NHT reductions.

4 Transformations between reductions

Any data structure, in particular those studied in the previous sections, may be
considered as composed of two disjoint pieces of information:

o Its contents, i.e. the data elements stored in it. We will refer to them as its set
set a or multiset mset a of elements of type a.

e The structure itself, i.e. the spatial disposition of the elements inside the struc-
ture. We will call structural information to this aspect of the data structure.

According to this view, we classify data structures based on the amount of structural
information they contain. We establish a hierarchy in which structures on top of it
contain the least structural information (i.e. sets and multisets), and structures at
the bottom contain the most. The aspect of this hierarchy is shown in figure 2.

Let us note that, in this hierarchy, ordered lists are located above unordered lists.
The idea is to be able to define unique homomorphisms from structures located at
low levels of the hierarchy to structures located at higher levels. The meaning of
these homomorphisms is “lost of structural information”. They are indicated in the
figure as filled arrows. The homomorphism going from unordered lists to ordered

www.manaraa.com

MULTISETS

BINARY BINARY

SEARCH SEARCH

TREES TREES

without repetitions with repetitions

Figure 2: data structure hierarchy

ones means “sort the list”,and it is an n to 1 mapping. The dotted arrows of figure 2
correspond to the homomorphisms “eliminate multiple copies of all the elements”. In
principle, as they represent lost of information about the data elements, we are not
very interested on them.

To speak properly about homomorphisms it is mandatory to say which are the
correspondent operations in both domains. For instance, in the homomorphisms from
unordered lists to ordered ones, H in the first domain is the homolog of merge in the
second domain. Sometimes we need to add appropriate operations in one of the
domains to be able to define the homomorphism. For instance, the one from binary
search trees without repetitions to sets can be defined:

1/%5 — HT(@H{})
where @, sl x st = sl U {x} Usr

So, we define an operation on sets UtYU : set — elem — set — set that joins two
sets and one element producing a new set. Then, this new operation corresponds in
the homomorphism to the binary tree constructor e.

The homomorphism going from unordered lists with possible repetitions to mul-
tisets is defined as follows:

Yim = HL(U, {5 { D

In this case we use the normal constructors of multisets as homolog operations of the
constructors of {ist,,

Many of the data structures reductions studied in previous sections depend on
the contents but not on the structural information. This is the case when computing
the maximum element of a binary tree or the sum of all the elements of a list. In
these cases, the reduction to apply can be obtained as the composition of two ho-
momorphisms: the one abstracting the structural information and the one reducing

www.manaraa.com

hm=HM(Bw, g} Dy} hs=HS(D 34 Py })

MULTISETS Jé] SETS Jé]

1/;lm 1/%5

hl:HL(GB_H_7 @[] s @[])

ht=HT(®,, D)

LISTS BINARY
SEARCH
TREES

Figure 3: Composition of homomorphic reductions

the resulting set or multiset. We denote by 1;, the homomorphism abstracting (a
part of) the structural information from a structure z to a structure y. For instance,
Yim reduces unordered lists with repetitions to multisets. The diagrams of figure 3
show how homomorphisms compose. There, HM (®y, .}, ©q}) reduces multisets
with constructors homolog to those of lists, and H.S(Dy¢y,®1)) reduces sets with
constructors homolog to those of binary trees.

Let us imagine a homomorphism hl = HL(® 4, @), $)) from lists to a value of
type B which is independent of the structural information of lists. If we express hl
as a composition of homomorphisms, the reductor operators relate each other in the
following way:

Sy = hi] = (hma) [| = hm {}=oy,y
IR = hi [2] (hmuabiy) [x] = hm {z) = @42
hMaesoy hlys = hl(zstrys) = (hmady) (2sHys)
hm (1/;lm l‘SU’l/Jlm yS)
(hm.thim) 25Dy (hmabiy,) ys
= hlzsPyhl ys

Then, it holds that @[] = @y}, &) = Dy} and &y = Gy. Let us note that y is
associative and commutative as it is a reductor operator of multisets, and so homolog
to U constructor.

Using the constructors for sets that are homolog to those of binary trees, we can
define the reduction on sets as the following homomorphism hs = HS(® 0y, B 1)

hs { } = @{}
hs (UBUslzs2) = @yoy (hssl)z (hs s2)

If we wish to reduce a tree into a value of type 3 by using a structure-independent
homomorphism At = HT(®,,Ba), we can do it by composing the two homomor-
phisms t;s and hs. The reductor operations relate each other as follows:

SN = ht A = (hS-'l/Jts) A= hS{ } = 69{}
Dy (M) z (Mt r) = hi(elzr) = (hsahy) (elzr)
hs(UUU(es 1) & (Y45 7))
Gury ((hstbes) 1) @ ((hs.tpes) 1)
= @U{}U(ht l) T (ht 7“)

www.manaraa.com

That is, By = B3y and G, = By

In other cases, the reduction of the data structure depends only on the structural
information, or on both the contents and the structural information. An example of
the first type is to compute the height of a tree. An example of the second type is
the example 2.1 for lists.

In particular, very interesting are those reductions giving as a result a structure
of the same type as the one being reduced, as it is the case with the insertion and
deletion operations studied in section 3. In these cases, the reductor operator cannot
add essential properties (such as commutativity or idempotency) over the properties
already satisfied by the constructor. Normally, the reductor will be a slight variation
of the constructor.

We wish to detect common patterns in these types of reductions by comparing
how they behave for different data structures.

4.1 Lists

We use the free constructors on forward lists [] and _ : _ and consider unordered
multiple-copies ones. Abstracting the structural information we get multisets. To
establish a homomorphism we add the _—_operation to multisets. It adds an element
to a multiset and satisfies the following permutative law:

r—=(y—=m) = y—(r—>m)
The reduction homomorphism for multisets is defined then:

hm {[ﬂ» = @ﬂ}
hm (z—=m) = z®dohmm

where ®, must satisfy the permutative law.
Let us consider inserting in an unordered multiple-copies list. We choose to insert
at the end of it:
insert; x = HL(&®.,[])
where y ®. [] = vix:[]
y @ ys=y:ys
If we interpret to insert “at the end” of a multiset as inserting before inserting any
other element, we obtain:
insert,, x = HM(®w, {}
where y @&, {} = yox—={}
Yy @y M = y—m
The structure of boths reductions is identical. This similarity remains when we
insert in ordered lists by using the non homomorphic reductor nhl (see example 3.3).
Deletion of all the copies of an element in ordered lists with repetitions is the
following homomorphism:
delete; x = HL(®., [])
wherey &. m =m , if x=y
= y:m , otherwise

www.manaraa.com

The version for multisets is:
delete,, x = HM(B, {]
wherey &, m=m , if x=y
=y < m, otherwise

The structures of both reductions are again identical. The main difference is that the
multiset reduction can be done in any order, taking into account the permutative law
that < satisfies. In forward lists, reduction will always be done from right to left. We
obtain the same similarity if we compare delete for lists without repetitions with delete
in a set. However, delete the first copy in lists with repetitions is not a homomorphism
as it has been shown in lemma 3.1. We can use here the non homomorphic reduction:

delete x = nhl (=x) &, (:) []
WheI‘e y @a ys =Y¥ys 3 if X=y
= y:ys , otherwise

We observe great similarity with deletion of all the copies. The role of the (=)
predicate consists only of stopping the deletion of copies once the first one has been

deleted.

4.2 Binary search trees

We consider trees without repetitions and sets with the special constructors that are
homomorphic to the tree constructors.
In example 3.5 it is shown how to insert in a binary search tree. The corresponding
version for sets is:
insert; x = HS(®you.{ })
where &, sl ys2 =Ulusl y (WU {} x{}), ifs2={}
=ullu Wltu {} x {}) ys2,ifs1={}
=UullUsl ys2 , otherwise

It is obvious to see that this is only one of the possibilities. We can freely permute
elements in a set. We have chosen the possibility that takes into account the order
present in search trees. Then, we can say that the reduction of a search tree can be
obtained by adding to the reduction of the corresponding set some hypothesis about
the order of the elements (i.e. by taking into account the structural information of
search trees).

In example 3.6 it is shown how to delete an element from a binary search tree.
The corresponding version for sets is:

delete; x = HS(®Buou.{})
where @, sl ys2 = UBUsl y s2, if x£y
Ounu 1 ys2 =52
Doy sl ys2 = UlU (delone s1) (selone s1) s2

where delone s1 deletes the element that selone s1 selects. The similarity is very clear
again. The order hypothesis in search trees forces us to select always the maximum
of the left subtree. In sets we are free to choose any element.

®

www.manaraa.com

5 Conclusion

We have studied in detail two kinds of higher order functions which reduce two com-
mon data structures, lists and binary trees, either in a homomorphical or in a non
homomorphical way. They encapsulate a powerful recursion scheme so that many
usual functions on these structures can be easily expressed in terms of them. Present
work is devoted to generalize this idea to other data structures.

Also, we have presented a way of comparing reductions in a hierarchy of data
structures differing in the degree of structural information they have. This idea con-
stitutes the basis for transforming algorithms expressed in terms of the structures
with less structural information to algorithms for the structures with more structural
information.

Acknowledgements

We would like to express our gratitude to Margarita Bradley and Pedro Palao for
their help while preparing this paper and to an anonymous referee who pointed out
some errors in the draft version. a

References

[1] J.W. Backus. Can functional programming be liberated from the Von Neumann
style? Communications of the ACM, 21:613-641, 1978.

[2] R. S. Bird. An introduction to the theory of lists. In Logic of Programming and
Caleuli of Discrete Design, pages 5-42. Springer Verlag. NATO ASI Series, vol.
F36, 1987.

[3] R. S. Bird. Lectures on constructive functional programming. In Constructive
Methods in Computer Science, pages 151-216. Springer Verlag. NATO ASI Series,
vol. F55, 1989.

[4] A. J. T. Davie. An Introduction to Functional Programming Systems Using
Haskell. Cambridge University Press, 1992.

[6] M. P. Jones. GOFER. Oxford University Computing Laboratory, 1992.

[6] G. Malcolm. Homomorphisms and promotability. In Mathematics of Program
Construction. LNCS 375, pages 335-347. Springer-Verlag, 1989.

[7] D.A. Turner. Miranda: A non-strict functional language with polymorphic types.
In LNCS 201, pages 1-16, Berlin, 1985. Springer-Verlag.

[8] A. Wikstrom. Functional Programming Using Standard ML. Prentice-Hall, 1987.

www.manaraa.com

