
www.manaraa.com

Non Homomorphic Reductions of Data StructuresLuis Antonio Gal�an, Manuel N�u~nez, Crist�obal Pareja, Ricardo Pe~nae-mail: flagalan,manuelnu,cpareja,ricardog@dia.ucm.esDepartamento de Inform�atica y Autom�aticaUniversidad Complutense de Madridfax: (34-1) 394 4607 ph: (34-1) 394 4429E-28040 Madrid. SpainAbstractIn this paper we study di�erent kinds of reductions of data types. By re-duction we mean applying the higher order function fold to a data structure.An appropriate fold function can be de�ned for any recursive data type. Thesereductions have been presented as homomorphisms by several authors [2, 6].Although many useful functions on data structures can be programmed as in-stances of fold, there are some that cannot. This is due to the fact that theyare not mathematical homomorphisms. We show some examples of these func-tions. Then, we introduce two generalizations of fold (one for lists and the otherfor binary trees) in terms of which many non homomorphic mappings can bede�ned. Some examples are presented.A second problem addressed in the paper is the relationship between thede�nitions of some particular reductions in di�erent data types. We show thatthe de�nition of a particular reduction, e.g. to insert an element in a datastructure, in terms of fold (either the generalized version or the usual one),looks the same for di�erent data structures. In many cases, one can be obtainedby transforming the other. We de�ne a hierarchy of data types according tothe amount of \structural" information they possess. It is shown how somereductions of a data structure A with more structural information than anotherone B can be obtained by composing the homomorphism from A to B that\forgets" structural information, with the homomorphism reducing B.1 IntroductionThere are two ideas that have been frequently stressed in transformational functionalprogramming: the use of object-free functions [1] and the de�nition of a small setof higher order functions (map, map2, foldr, �lter, etc.) that can cope with a largenumber of situations (e.g. the Bird-Merteens formalism [2]). Modern functionallanguages such as SML, Miranda, Haskell and Gofer [8, 7, 4, 5] are examples of this.The advantage of using these functions is twofold: in one hand, they encapsulate well

www.manaraa.com

known recursion patterns, avoiding the use of explicit recursion in situations matchingthese patterns. In the other hand, they satisfy a number of algebraic laws allowingthe transformation of programs in a secure manner, from ine�cient clear formulationsto more-e�cient, less-clear ones [2, 3].Among these patterns, the function fold deserves special mention. The intuitionbehind it is to reduce a polymorphic data structure of type T � into a value of type�. In particular, � may coincide with T �. Many functions getting information froma data structure or modifying it (in the sense of producing a modi�ed copy of it), canbe programmed as instances of fold. In fact, other higher order functions such as mapand �lter can be de�ned in terms of fold. In [6] the fold function is characterized as ahomomorphism. However, not every function f : T ��!� is a homomorphism. Wepresent some examples of non homomorphic funtions on lists and trees.Looking for a common pattern for these non homomorphic functions, we proposea modi�ed version of fold for lists, named nhl in the paper, and another for binarytrees, named nht, allowing to express some common non homomorphic accesses tothese structures. Also some homomorphic functions very complex to express as such,can be de�ned in a simple way using these new reductions.A second problem we address in the paper is the relationship between reductionsin di�erent data types. We follow an approach that considers a data structure asformed by two components: the data elements and the \structure" itself. We de�nea hierarchy of data types according to the quantity of \structural" information theypossess. We show that some reductions of data structures with more structural in-formation can be expressed as the composition of two homomorphisms: the one thatforgets all or part of the structural information, and the one that reduces the targetstructure.Prosecuting this idea, we compare the de�nition of some interesting reductions (in-serting and deleting an element in a data structure) for di�erent data structures. We�nd out the de�nitions so similar, that all of them could be obtained by transformingthe reduction of the structure with no structural information (sets and multisets).The organization of the paper is as follows: after this introduction, in section 2 wereview some of the work done in the last few years on homomorphisms. We presentsome examples of homomorphisms over lists, sets, multisets and binary trees. In sec-tion 3 we present some non homomorphic functions on lists and binary search trees,and introduce our generalization of the fold function for these two structures. Inparticular, it is shown how several variants of insertion and deletion can be easily ex-pressed in terms of the new higher order functions. Section 4 is devoted to presentingthe hierarchy of data structures and the transformations between reductions of dif-ferent data structures. Finally, section 5 provides a short conclusion and summarizesthe lines along which this work can be continued in the near future.2 Homomorphic reductionsHomomorphisms [2, 3, 6] constitute a uniform way of expressing functions thatdistribute (promote in words of R. Bird) their activity both to the data elements and to

www.manaraa.com

the constructors of a data structure. Since most of the interesting data structures haverecursive constructors, homomorphisms encapsulate a recursion scheme consisting ofapplying to all the substructures the same function applied to the main structure.This scheme is used by many functions working on the structure.De�nition 2.1 A function h de�ned on a data structure of elements of type �,(denoted T �) is a homomorphism if there existm reductor functions �Ki (1 � i � m),one for every constructor Ki, such that h is de�ned as:h :: T �! �h (Ki e1 : : : eri) = �Kie01 : : : e0riwhere e0j = � ej ; if ej :: �h ej ; if ej :: T �We will use the notation h = H(�K1 : : :�Km).2.1 Homomorphisms on listsIn most functional languages, lists are recursively de�ned in terms of two constructors:the empty list, denoted [], and the Cons constructor denoted : .listr � = [] j (:) � (listr �)We call these lists forward lists after [6] and, since they are reduced from right toleft, we denote them by listr . The homomorphisms over listr are then denotatedH(�:;�[]). When referring to any kind of lists we will use HL instead of H. Thesymmetric de�nition (a constructor adding an element to the right of the list) leadsus to the corresponding backwards lists, denoted listl as they are reduced from leftto right. In FP [1] sequences encapsulate both types of lists and mechanisms foraccessing and modifying both ends of a list are provided by the language.The most important higher order function on lists is the reduction. It is calledfoldr (in Miranda and Haskell) for listr , and foldl for listl1. In general, the operator(�) is not associative . When it is so, and using Bird notation, fold is denotated �=.It is de�ned as follows:De�nition 2.2 Let (�) : � ! � ! � be associative and with neutral element id�.We de�ne: = :: (�! �! �)! [�]! ��= [x1 : : :xn] = x1� : : :�xn�= [] = id�Bird considers lists as monoids (join-lists in [6]). The base cases are the emptylist and the unit list. The recursive case is the list constructed by appending two1Usually, foldl is de�ned in terms of the forward constructor (:). However, the reduction concep-tually corresponds to a de�nition in terms of the backwards constructor.

www.manaraa.com

lists with the ++ operator which is associative and has the empty list as its neutralelement. We will denote them listm .listm � = [] j [:]� j (++) (listm�) (listm�)The main advantage of listm is its generality: listr and listl are particular cases of it.In contrast, they have the drawback of not having free constructors, so the followinglaws must be settled amongst them:8x; y; z 2 listm (x++y)++z = x++(y++z)x++[] = []++x = xHomomorphisms associated to listm must preserve the associativity of ++. Amapping h over listm is a homomorphism if there exists an associative function�++ : � ! � ! � and functions �[:] : �! � and �[] : � such thath(l1++l2) = (h l1)�++ (h l2)h [x] = �[:] xh [] = �[]The main law satis�ed by these homomorphisms is the following:h homomorphism over listm , h = �=: f�where f� denotes the expression map f .We will abbreviate after Bird HL(�++ ;�[:];�[]) by B(�; f), and we will call thesehomomorphisms B-homomorphisms, being � = �++, f = �[:] and id�++ = �[]2. It isinmmediate to express any B-homomorphisms as an HL(�:;�[]).A large number of functions over �nite lists can be expressed as B-homomorphisms:f� = B(++; [:]:f)�= = B(�; id�)p / = B(++; p! [:];K[])all p = B(^; p)some p = B(_; p)length = B(+;K1)reverse = B(�++; [:])mergesort = B(merge; [:])id[�] = B(++; [:])where K x y = x, merge merges two ordered lists, a �++ b = b++ a and(p! f ; g) x = � f x; if p x holdsg x; otherwiseIt must be noted that B-homomorphisms are strictly less general than forward listhomomorphisms HL(�:;�[]) as the following example shows.2When id�++ doesn't exist, the domain excludes the empty list.

www.manaraa.com

Example 2.1 We wish to compute the integer represented by a list of digits, eachone in the range 0::9, being the most signi�cant digit the rightmost one.integer = HL(�:; 0)where x�:s = s � 10 + xThis function cannot be expressed as a B-homomorphism, because there is no way(with a homomorphism) of recording the number of zeroes in the middle of the com-putation.2.2 Homomorphisms over other usual monoidsHomomorphisms can be easily generalized to other data structures. The main require-ment for them is that the reductor operators must preserve the constructor laws.Multisets are commutative monoids. Their algebraic de�nition is as follows:mset � = fj gj j fj:gj� j ([[) (mset �) (mset �)where the binary constructor [[satis�es the associative and commutative laws. As aconsequence, homomorphisms h over multisets must provide an associative, commu-tative reductor �[[and satisfy:h(m1[[m2) = (h m1)�[[(h m2)For instance, the cardinal of a multiset, or the sum of all their elements are ho-momorphisms. In both cases, �[[is the + operator over natural numbers.Sets are commutative, idempotent monoids. Their algebraic de�nition is:set � = f g j f:g� j ([) (set �) (set �)where the binary constructor [satis�es the associative, commutative and idempotentlaws. As a consequence, homomorphisms h over sets must provide an associative,commutative, idempotent reductor �[and satisfy:h(s1 [s2) = (h s1)�[(h s2)Functions computing the maximum element of a set, or the greatest common divi-sor of all of them can be expressed as homomorphisms over sets. Also, the predicatesusing all p, such as the section (� S) for a given S, de�ned as (� S) = all (2 S), orthose using some p, such as the section (x 2), de�ned as (x 2) = some (x =), arehomomorphisms.2.3 Homomorphisms over binary treesIn this section we introduce the algebraic de�nition of binary trees and their associatedhomomorphisms: Tree � = 4 j � (Tree �) � (Tree �)Then, homomorphisms over binary trees need the existence of two reductors.

www.manaraa.com

De�nition 2.3 We say that a function h : Tree � ! � is a homomorphism if thereexist reductor functions �� : � ! �! � ! � and �4 : � such that:h4 = �4h (� l x r) = �� (h l) x (h r)We will use the notation h = HT (��;�4) to denotate these homomorphisms.A number of homomorphic functions over lists have their homolog ones over trees:f� = HT (��;4)where �� l x r = � l (f x) rall p = HT (V; T rue)where V bl x br = (p x) ^ bl ^ brsome p = HT (W; False)where W bl x br = (p x) _ bl _ brsize = HT (��; 0)where �� il x ir = il + 1 + irheight = HT (��; (�1))where �� il x ir = 1 +max il irflatten = HT (++3; [])where ++3 l x r = l++[x]++ridTree � = HT (�;4)3 Non homomorphic reductionsIn this section, two higher order functions are de�ned |one for forward lists andanother one for binary trees| that generalize common non homomorphic functionson these structures.The underlying idea on these functions comes from realizing that many functionson a structure, �rst search along the structure looking for some property to hold; thensome special treatment is done, and then the rest of the structure is ignored. In termsof reduction, this idea can be interpreted as follows: the structure is divided into twoparts, the active one and the passive one with the aid of one or more predicates.Reducing the active part amounts to say that the reductor operator does the search,and if the search succeeds applies the special treatment. Reducing the passive partconsists of applying a di�erent reductor operator, which in many cases simply copiesthe structure.We are specially interested in those operations that return a structure of the sametype as the original one, i.e. we pay attention to insertion and deletion operations.3.1 ListsWe study ordered and unordered lists, with and without multiple copies of elements.For ordered lists without repetitions both operations are homomorphisms. Their de�-nitions follow.

www.manaraa.com

Example 3.1insert x = B(�,f)where f y = [x,y] , if x<y= [y,x] , if x>y= [y] , if y=x(l1++[x1]) � ([x2]++l2) = l1++[x2]++l2 , if x1=x= l1++[x1]++l2 , if x2=xdelete x = (x6=) /We see that expressing insert as a homomorphism is little intuitive: we �rst insert acopy of x either to the right or to the left of each element. Then we remove all thecopies except the one that must remain.For unordered lists without repetitions both operations are also homomorphisms.In fact, delete is the same function of example 3.1. The insert function is the followinghomomorphism:Example 3.2 insert x = B(�, f)where f y = [x,y] , if x6=y= [y] , otherwisel1 � ([x2]++l2) = l1++l2Again, the technique consists of inserting a copy of x for every element in the list notequal to x, and then removing all the copies except the leftmost one.However, for lists with repetitions some operations are not homomorphisms. In-sertion of a new copy indeed it is, and can be de�ned by slightly modifying theotherwise clause of example 3.2. But to delete the leftmost copy of a value x is nota homomorphism as the following lemma shows.Lemma 3.1 The function that deletes the leftmost copy of a value x in an orderedlist with repetitions is not a homomorphism.Proof. Let us assume that h implements that function an h is a homomorphism.Then, there exists a reductor � such that h (y :ys) = y � h ys.Let xs be any list without occurrences of the value x. Then, h xs = xs, andh (x :xs) = xs. But h (x :xs) = x � h xs, then x � xs = xs. As a consequence, wehave h (x : x : xs) = x � h (x : xs) = x � xs = xs, in contradiction with what thehypothesis says: that h only deletes one copy of x.For the case of unordered lists the proof is very similar, but it must be noted thath xs needs not be equal to xs but to a permutation of the elements of xs.Despite the fact that some of these functions are not homomorphisms or, if theyare, it is di�cult to express them as such, it is possible to de�ne a homomorphism,named split, which does part of the work of insert and delete. What remains to bedone is simple enough to make the programming of these two functions an easy task.The homomorphism split, de�ned below, applies a predicate q to the list and splits itinto two lists in such a way that the �rst element of the second list (in the case thelist is not empty) is the leftmost element of the original list satisfying q. For example,split (>5) [1,3,5,7,4]=[[1,3,5],[7,4]].

www.manaraa.com

De�nition 3.1split q = B(�,f)where f x = [[],[x]] , if q x= [[x],[]] , otherwise[l1,[]] � [l2,m2] = [l1++l2, m2][l1,m1] � [l2,m2] = [l1,m1++l2++m2]Let us remark that the neutral element of operation � in this case is [[]; []]. Withthe aid of split, deletion of the leftmost copy of x can be programmed as:delete x = del.(split (x=))where del [l1 , x:l2] = l1 ++l2del [l1 , []] = l1Unfortunately, split is not a solution for all the problems concerning insertion anddeletion. For instance, the homomorphism that deletes all the copies of an elementis not easily constructed with split. Besides, it is not clear how to generalize split toother data structures. So, we de�ne a more general non homomorphic reduction forlists based on the idea presented at the beginning of this section.De�nition 3.2 Non Homomorphic reduction function for Lists (nhl):nhl q �a �d b []= bnhl q �a �d b (x:xs) = x �a (nhl q � �d b xs)where � = �a , if : (q x)= �d , otherwiseReductor operators �a (active) and �d (default or passive) correspond to the (:) con-structor, and b corresponds to the [] constructor. We will use the following notationwhich mimics that used for homomorphisms:nhl q �a �d b = NHL(q,�a: ,�d: ,�[])The function nhl \inserts" an active reductor after each element of the list includingthe �rst, if any, satisfying the q predicate. From that point to the end of the list, nhlinserts the passive reductor. The following expression pictures this idea:nhl q �a �d b [x1; x2; : : : ; xi; xi+1; : : : ; xn�1; xn] =x1�a(x2�a(: : : xi�a(xi+1�d(: : : xn�1�d(xn�db) : : :)being i = minf1 : : :ng such that q xi holds.Trivially, any homomorphismHL(�:;�[]) on forward lists can be expressed as thenon homomorphic reduction NHL(q;�a: ;�d: ;�[]) making �a: = �d: = �:, and beingq any boolean function. Some awkward homomorphic functions can be elegantlyexpressed as a non homomorphic reduction. For instance, inserting a value x in anordered list without repetitions is now:Example 3.3 insert x = nhl (�x) � (:) []where y � ys = x:y:ys , if x < y= y:x:[] , if ys=[] ^ x > y= y:ys , otherwise

www.manaraa.com

We assume that the argument list is non empty. If it is empty, then insert x []= [x].The other insertion functions can be similarlyprogrammed. For deletion, the followingfunction is enough for all the cases presented in this section.Example 3.4 delete x = nhl (=x) � (:) []where y � ys = ys , if x = y= y:ys , otherwiseLet us note in these examples that the passive reductor is (:) and the base case is [],so they reconstruct (or copy) the original list.3.2 Binary treesFor these structure, we only consider binary search trees without multiple occurrencesof elements. The treatment of multiple occurrences does not present special problemsin this structure.The non homomorphic reduction we are proposing here encapsulates as a partic-ular case the usual recursion scheme on binary search trees: the search propagateseither to the left or to the right subtree, never to both of them at the same time.De�nition 3.3 Non Homomorphic reduction function for Trees (nht):nht ql qr �a �d b 4 = bnht ql qr �a �d b (� l x r) = �a (nht ql qr �l �d b l) x (nht ql qr �r �d b r)where �l = �a , if : (ql x)= �d , otherwise�r = �a , if :(qr x)= �d , otherwisePredicates ql and qr trigger the change from active to passive mode in the corre-sponding subtrees, the �rst time they hold. The active part of the tree extends fromthe root to the nearest elements satisfying ql or qr. The �gure 1 shows an exampleof execution.Reductor operators �a and �d correspond to the � constructor, and the base caseb corresponds to the 4 constructor. We will use then the following notation:nht ql qr �a �d b =NHT(ql,qr,�a�,�d�,�4)Like in the case of lists, we could express the insertion and deletion as homomor-phisms. Unfortunately, the resulting functions are not so easy to understand. Byusing the non homomorphic reduction, we see below that the result is very simple.Example 3.5insert x = nht (�x) (�x) � � 4where � l y r = � l y (� 4 x 4) , if r=4 ^ x>y= � (� 4 x 4) y r , if l=4 ^ x<y= � l y r , otherwise

www.manaraa.com

JJJJJ

 �d JJJJJ

 �dx3 JJJJJ

 �dx2�a�a x1�a x44

ZZZZ,,,,,,,,#### cccc ccccc�aJJJJJ

 �dcccccFigure 1: An example of nht execution.Example 3.6 delete x = nht (�x) (�x) � � 4where � l y r = � l y r, if x 6= y� 4 y r = r� l y r = � (delmax l) (selmax l) rThe functions delmax and selmax, respectively deletes and selects the maximum ele-ment of a tree and could also be expressed as NHT reductions.4 Transformations between reductionsAny data structure, in particular those studied in the previous sections, may beconsidered as composed of two disjoint pieces of information:� Its contents, i.e. the data elements stored in it. We will refer to them as its setset � or multiset mset � of elements of type �.� The structure itself, i.e. the spatial disposition of the elements inside the struc-ture. We will call structural information to this aspect of the data structure.According to this view, we classify data structures based on the amount of structuralinformation they contain. We establish a hierarchy in which structures on top of itcontain the least structural information (i.e. sets and multisets), and structures atthe bottom contain the most. The aspect of this hierarchy is shown in �gure 2.Let us note that, in this hierarchy, ordered lists are located above unordered lists.The idea is to be able to de�ne unique homomorphisms from structures located atlow levels of the hierarchy to structures located at higher levels. The meaning ofthese homomorphisms is \lost of structural information". They are indicated in the�gure as �lled arrows. The homomorphism going from unordered lists to ordered

www.manaraa.com

� -with repetitions�� ���� ��LISTS SEARCHBINARYTREES�� ��ORDEREDLISTS�� ��MULTISETS
AAAAAK������ ������� -without repetitions�� ���� ��LISTS SEARCHBINARYTREES�� ��ORDEREDLISTS�� ��SETS

AAAAAK������ ������ � �
CCCCCCCCCCCCOCCCCCCCCCCCCO 33

Figure 2: data structure hierarchyones means \sort the list",and it is an n to 1 mapping. The dotted arrows of �gure 2correspond to the homomorphisms \eliminate multiple copies of all the elements". Inprinciple, as they represent lost of information about the data elements, we are notvery interested on them.To speak properly about homomorphisms it is mandatory to say which are thecorrespondent operations in both domains. For instance, in the homomorphisms fromunordered lists to ordered ones, ++ in the �rst domain is the homolog of merge in thesecond domain. Sometimes we need to add appropriate operations in one of thedomains to be able to de�ne the homomorphism. For instance, the one from binarysearch trees without repetitions to sets can be de�ned: ts = HT(��,fg)where �� sl x sr = sl [fxg [srSo, we de�ne an operation on sets [fg[: set ! elem ! set ! set that joins twosets and one element producing a new set. Then, this new operation corresponds inthe homomorphism to the binary tree constructor �.The homomorphism going from unordered lists with possible repetitions to mul-tisets is de�ned as follows: lm = HL([[; fj:gj; fj gj)In this case we use the normal constructors of multisets as homolog operations of theconstructors of listm .Many of the data structures reductions studied in previous sections depend onthe contents but not on the structural information. This is the case when computingthe maximum element of a binary tree or the sum of all the elements of a list. Inthese cases, the reduction to apply can be obtained as the composition of two ho-momorphisms: the one abstracting the structural information and the one reducing

www.manaraa.com

6 -����������*LISTSMULTISETS �hm=HM(�[[;�fj:gj;�fj gj)hl=HL(�++ ;�[:];�[]) 6 -����������*BINARYSEARCHTREESSETS �hs=HS(�[fg[;�f g)ht=HT(��;�4) lm tsFigure 3: Composition of homomorphic reductionsthe resulting set or multiset. We denote by xy the homomorphism abstracting (apart of) the structural information from a structure x to a structure y. For instance, lm reduces unordered lists with repetitions to multisets. The diagrams of �gure 3show how homomorphisms compose. There, HM (�[[;�fj:gj;�fj gj) reduces multisetswith constructors homolog to those of lists, and HS(�[fg[;�f g) reduces sets withconstructors homolog to those of binary trees.Let us imagine a homomorphism hl = HL(�++;�[:];�[]) from lists to a value oftype � which is independent of the structural information of lists. If we express hlas a composition of homomorphisms, the reductor operators relate each other in thefollowing way:�[] = hl [] = (hm: lm) [] = hm fj gj = �fj gj�[:]x = hl [x] = (hm: lm) [x] = hm fjxgj = �fj:gjxhl xs�++ hl ys = hl (xs++ys) = (hm: lm) (xs++ys)= hm (lm xs[[lm ys)= (hm: lm) xs�[[(hm: lm) ys= hl xs�[[hl ysThen, it holds that �[] = �fj gj;�[:] = �fj:gj and �++ = �[[. Let us note that �[[isassociative and commutative as it is a reductor operator of multisets, and so homologto [[constructor.Using the constructors for sets that are homolog to those of binary trees, we cande�ne the reduction on sets as the following homomorphism hs = HS(�[fg[;�f g)hs f g = �f ghs ([fg[s1 x s2) = �[fg[(hs s1) x (hs s2)If we wish to reduce a tree into a value of type � by using a structure-independenthomomorphism ht = HT (��;�4), we can do it by composing the two homomor-phisms ts and hs. The reductor operations relate each other as follows:�4 = ht 4 = (hs: ts)4 = hsf g = �f g�� (ht l) x (ht r) = ht(�l x r) = (hs: ts) (�l x r)= hs([fg[(ts l) x (ts r))= �[fg[((hs: ts) l) x ((hs: ts) r)= �[fg[(ht l) x (ht r)

www.manaraa.com

That is, �� = �[fg[and �4 = �f g.In other cases, the reduction of the data structure depends only on the structuralinformation, or on both the contents and the structural information. An example ofthe �rst type is to compute the height of a tree. An example of the second type isthe example 2.1 for lists.In particular, very interesting are those reductions giving as a result a structureof the same type as the one being reduced, as it is the case with the insertion anddeletion operations studied in section 3. In these cases, the reductor operator cannotadd essential properties (such as commutativity or idempotency) over the propertiesalready satis�ed by the constructor. Normally, the reductor will be a slight variationof the constructor.We wish to detect common patterns in these types of reductions by comparinghow they behave for di�erent data structures.4.1 ListsWe use the free constructors on forward lists [] and : and consider unorderedmultiple-copies ones. Abstracting the structural information we get multisets. Toestablish a homomorphismwe add the ,! operation to multisets. It adds an elementto a multiset and satis�es the following permutative law:x,!(y,!m) = y,!(x,!m)The reduction homomorphism for multisets is de�ned then:hm fj gj = �fj gjhm (x,!m) = x�,!hm mwhere �,! must satisfy the permutative law.Let us consider inserting in an unordered multiple-copies list. We choose to insertat the end of it: insertl x = HL(�:; [])where y �: [] = y:x:[]y �: ys = y:ysIf we interpret to insert \at the end" of a multiset as inserting before inserting anyother element, we obtain:insertm x = HM(�,!; fj gj)where y �,! fj gj = y,!x,!fj gjy �,! m = y,!mThe structure of boths reductions is identical. This similarity remains when weinsert in ordered lists by using the non homomorphic reductor nhl (see example 3.3).Deletion of all the copies of an element in ordered lists with repetitions is thefollowing homomorphism:deletel x = HL(�:; [])where y �: m = m , if x=y= y:m , otherwise

www.manaraa.com

The version for multisets is:deletem x = HM(�,!; fj gj)where y �,! m = m , if x=y= y ,! m , otherwiseThe structures of both reductions are again identical. The main di�erence is that themultiset reduction can be done in any order, taking into account the permutative lawthat ,! satis�es. In forward lists, reduction will always be done from right to left. Weobtain the same similarity if we compare delete for lists without repetitions with deletein a set. However, delete the �rst copy in lists with repetitions is not a homomorphismas it has been shown in lemma 3.1. We can use here the non homomorphic reduction:delete x = nhl (=x) �a (:) []where y �a ys = ys , if x=y= y:ys , otherwiseWe observe great similarity with deletion of all the copies. The role of the (= x)predicate consists only of stopping the deletion of copies once the �rst one has beendeleted.4.2 Binary search treesWe consider trees without repetitions and sets with the special constructors that arehomomorphic to the tree constructors.In example 3.5 it is shown how to insert in a binary search tree. The correspondingversion for sets is:inserts x = HS(�[fg[,f g)where �[fg[s1 y s2 = [fg[s1 y ([fg[f g x f g) , if s2=f g= [fg[([fg[f g x f g) y s2 , if s1=f g= [fg[s1 y s2 , otherwiseIt is obvious to see that this is only one of the possibilities. We can freely permuteelements in a set. We have chosen the possibility that takes into account the orderpresent in search trees. Then, we can say that the reduction of a search tree can beobtained by adding to the reduction of the corresponding set some hypothesis aboutthe order of the elements (i.e. by taking into account the structural information ofsearch trees).In example 3.6 it is shown how to delete an element from a binary search tree.The corresponding version for sets is:deletes x = HS(�[fg[; f g)where �[fg[s1 y s2 = [fg[s1 y s2, if x6=y�[fg[f g y s2 = s2�[fg[s1 y s2 = [fg[(delone s1) (selone s1) s2where delone s1 deletes the element that selone s1 selects. The similarity is very clearagain. The order hypothesis in search trees forces us to select always the maximumof the left subtree. In sets we are free to choose any element.�

www.manaraa.com

5 ConclusionWe have studied in detail two kinds of higher order functions which reduce two com-mon data structures, lists and binary trees, either in a homomorphical or in a nonhomomorphical way. They encapsulate a powerful recursion scheme so that manyusual functions on these structures can be easily expressed in terms of them. Presentwork is devoted to generalize this idea to other data structures.Also, we have presented a way of comparing reductions in a hierarchy of datastructures di�ering in the degree of structural information they have. This idea con-stitutes the basis for transforming algorithms expressed in terms of the structureswith less structural information to algorithms for the structures with more structuralinformation.AcknowledgementsWe would like to express our gratitude to Margarita Bradley and Pedro Palao fortheir help while preparing this paper and to an anonymous referee who pointed outsome errors in the draft version. �References[1] J.W. Backus. Can functional programming be liberated from the Von Neumannstyle? Communications of the ACM, 21:613{641, 1978.[2] R. S. Bird. An introduction to the theory of lists. In Logic of Programming andCalculi of Discrete Design, pages 5{42. Springer Verlag. NATO ASI Series, vol.F36, 1987.[3] R. S. Bird. Lectures on constructive functional programming. In ConstructiveMethods in Computer Science, pages 151{216. Springer Verlag. NATO ASI Series,vol. F55, 1989.[4] A. J. T. Davie. An Introduction to Functional Programming Systems UsingHaskell. Cambridge University Press, 1992.[5] M. P. Jones. GOFER. Oxford University Computing Laboratory, 1992.[6] G. Malcolm. Homomorphisms and promotability. In Mathematics of ProgramConstruction. LNCS 375, pages 335{347. Springer-Verlag, 1989.[7] D.A. Turner. Miranda: A non-strict functional language with polymorphic types.In LNCS 201, pages 1{16, Berlin, 1985. Springer-Verlag.[8] A. Wikstr�om. Functional Programming Using Standard ML. Prentice-Hall, 1987.

